blizzard 1997 8.jpg

- Prairie Snow: thin snow, wind, lakes, agriculture (soybean, corn, some bare soils)
- Substrate conditions: vegetation, frozen soil
- Spatial heterogeneity
- Vertical heterogeneity: Freeze-thaw cycles, ice lensing, depth hoar
- Wet snow: melt season, transitional snow/rain precipitation types
- Albedo
- Wind effect on Prairie snow: SD/SWE distribution, wind packing, sublimation
- Flooding due to snowmelt
- Snow on lake ice

Big questions:

- 1. Substrate: frozen/thawed soil, vegetation, till/no till agriculture
- 2. Wind redistribution/sublimation/albedo
- 3. Freeze-thaw/phase change/vertical heterogeneity

Essential characteristics of the site and campaign

- → Variation in surface types (agriculture, grasslands, lakes?)
- → Logistical ease (permissions & access, power, nearby airport, existing networks?, internet?)
- → Local snow researcher(s) (to take on main responsibilities)
- → Time series approach (to capture antecedent conditions, snow evolution, melt period, freeze-thaw cycles)
- → Flexibility in sites? (snow doesn't always fall where we want in this region)
- → Flexibility in campaign timing? (snow doesn't always fall when we want in this region)
- → Watershed? (to close water budget)

Candidate sites:

- → Red River of the North
- → Yellowstone watershed, MT
- → NRCS ranch, MT
- → Brookings, SD
- → Canada partnership???

Candidate sensors/techniques

1. Airborne

- → Untested/Not operational: Active & passive L, L InSAR, active C, X, & Ku, LiDAR
- → Operational: AMSR-E-like, gamma, optical

2. GBRS, in-situ snowpits